Содержание фотосинтетических пигментов в листьях растений мусонного тропического леса в разные сезон

Фотосинтетические пигменты находятся

В муссонных тропических лесах Вьетнама четко выделяются два сезона: влажный и сухой. Во время влажного сезона выпадает до 85 % годовой суммы осадков [2]. Такие резкие вариации климатических условий в течение года приводят к необходимости растений адаптироваться к изменению условий произрастания. Изменение гидрологических условий в течение года вызывает изменения в количестве и составе фотосинтетических пигментов [9], которые влияют на фотосинтетические свойства и, следовательно, на накопление биомассы растений.

Однако эта сезонная контрастность в условиях водного режима не оказывает большого влияния на условия освещенности под пологом леса. Виды, растущие в этих затененных условиях, относятся к разным жизненным формам и их можно разделить на две основные группы: одни находятся в этих условиях в течение всего онтогенеза, а другие – только на ранних этапах.

Таким образом, на начальных этапах онтогенеза растениям тропического леса необходимо адаптироваться одновременно к двум стрессовым факторам: низкой освещенности и изменению гидрологических условий в течение года. Вопрос о путях адаптации в условиях сезонного изменения климата тропического леса остается открытым и, прежде всего, это касается фотосинтетического аппарата. Вклад видов в общий годичный углеродный баланс будет определяться их функциональной активностью в разные сезоны года.

Целью нашей работы было сравнительное изучение сезонной динамики содержания фотосинтетических пигментов в листьях растений разных жизненных форм, произрастающих под пологом тропического леса.

Материал и методы исследования

Исследование было проведено в южном Вьетнаме в национальном парке «Кат Тиен» (11° с.ш., 107° в.д.). Территория Вьетнама согласно классификации климатов Б.П. Алисова (классификация по режиму циркуляции воздушных масс – см. [Хромов, Петросянц, 2001]) относится к субэкваториальному климату (климат экваториальных муссонов). Во время влажного сезона, длящегося с мая по октябрь, выпадет до 85 % годовой нормы осадков (рисунок). Среднегодовая температура воздуха составляет 26,4°С [2]. Освещенность под пологом леса на высоте 1 м составляет менее 1 % от освещенности открытого места.

Сезонная динамика суммарных осадков (мм*сут-1) в национальном парке «Кат Тиен» в 2012 г.

Объектами исследования были растения двух разных жизненных форм:

– деревья: Lagerstroemia calyculata Kurz. (Lythraceae) – подрост верхнего яруса, Pterospermum sp. (Sterculiaceae) – подрост второго-третьего яруса, Phyllantus sp. (Euphorbiaceae) – вид нижнего яруса;

– лианы: Ancistrocladus tectorius (LOUR.) MERR. (Ancistrocladaceae), Dalbergia sp. (Fabaceae), Calamus sp. (Arecaceae). Ancistrocladus tectorius и Dalbergia sp. могут достигать высоты деревьев второго подъяруса, Calamus sp. выносит крону на высоту крон деревьев третьего и четвертого подъярусов (Кузнецов, 2003).

Содержание фотосинтетических пигментов определяли один раз в месяц в течение влажного (август – сентябрь 2011 г.) и сухого (декабрь – март 2011–2012 гг.) сезонов. Пробы листьев брали с 3 растений (по 5 листьев с каждого растения) из средней части кроны в 11–12 ч (местное время). Образцы помещали в темные полиэтиленовые пакеты со льдом и доставляли в лабораторию. Анализ проводили в день сбора. Пигменты экстрагировали 96 % этанолом. Оптическую плотность экстракта определяли на спектрофотометре (APEL, PD-303, Япония). Содержание пигментов рассчитывали по формулам, представленным в работе Wintermans и De Mots [12]. Размер светособирающего комплекса (ССК) был рассчитан с предположением, что весь хлорофилл b входит в ССК и соотношение ХЛ a/b в ССК равно 1,2 [8]. Для каждого показателя фотосинтетического аппарата было рассчитано среднее арифметическое значение для каждого сезона. Данные обработаны с помощью дисперсионного анализа с использованием программы STATISTICA [2].

Результаты исследования и их обсуждение

Проведенные исследования по содержанию пигментов показали, что содержание суммы хлорофиллов варьируется у всех исследованных видов в сухой сезон от 7,0 мг/г (Pterospermum sp) до 10,2 мг/г (Dalbergia sp); во влажный сезон диапазон варьирования составляет от 7,8 мг/г (Calamus sp.) до 12,5 мг/г (Dalbergia sp). Изменения в содержании каротиноидов составляют в сухой сезон от 0,9 мг/г (Pterospermum sp) до 1,5 мг/г (Dalbergia sp), во влажный – от 1,1 мг/г (Calamus sp) до 1,7 мг/г (Dalbergia sp.) (табл. 1, 2). Отношение хлорофилла a к хлорофиллу b (ХЛ a/b) отличалось незначительно у изученных видов и варьировалось в сухой сезон от 1,6 (Ancistrocladus sp.) до 1,9 (Calamus sp.); во влажный – от 1,9 (Ancistrocladus sp.) до 2,2 (Calamus sp., Phyllantus sp.). Следует отметить высокие отношения суммы хлорофиллов к каротиноидам (ХЛ/каротиноиды): в сухой сезон от 6,9 (Dalbergia sp.) до 8,1 (Ancistrocladus sp.); во влажный сезон – от 6,2 (Phyllantus sp.) до 7,2 (Dalbergia sp.). Все виды имели высокое значение ССК: в сухой сезон – от 77 (Calamus sp.) до 87 % (Ancistrocladus sp.), во влажный сезон – от 69 (Phyllantus sp.) до 75 % (Ancistrocladus sp.) (табл. 1, 2).

Содержание фотосинтетических пигментов (мг/г сухой массы) и их соотношения в течение сухого сезона

Вид, жизненная форма

Lagerstroemia sp., дерево

Pterospermum sp., дерево

Phyllantus sp., дерево

Средние значения для жизненной формы дерево

Calamus sp., лиана

Ancistrocladus sp., лиана

Dalbergia sp., лиана

Средние значения для жизненной формы лиана

Содержание фотосинтетических пигментов (мг/г сухой массы) и их соотношения в течение влажного сезона

Вид, жизненная форма

Lagerstroemia sp., дерево

Pterospermum sp., дерево

Phyllantus sp., дерево

Средние значения для жизненной формы дерево

Calamus sp., лиана

Ancistrocladus sp., лиана

Dalbergia sp., лиана

Средние значения для жизненной формы лиана

Сравнение показало, что содержание пигментов между видами достаточно сходное и не зависит от жизненной формы; среднее содержание пигментов (хлорофилла а и суммы каротиноидов) во влажный сезон увеличивается, хотя реакция отдельных видов различается.

Анализ полученных данных по отдельным видам показал, что их реакция по содержанию пигментов на изменение гидрологического режима различается, и можно выделить две группы видов: у первой группы содержание пигментов достоверно различается в разные сезоны, у второй – изменяется незначительно или эти изменения отсутствуют (табл. 1, 2). К первой группе относятся два древесных вида: Lagerstroemia sp., Pterospermum sp. и две лианы: Ancistrocladus sp., Dalbergia sp. Для этих видов была выявлена зависимость содержания фотосинтетических пигментов от сезона года: содержание хлорофилла а во влажный сезон увеличивается у деревьев на 19, 42, у лиан – на 18, 24 % соответственно, а каротиноидов у деревьев на 25, 44, у лиан – на 30, 15 % соответственно по видам.

Ко второй группе относятся два вида – Phyllantus sp. (дерево) и Calamus sp. (лиана). У этих видов содержание фотосинтетических пигментов изменяется незначительно (по всем показателям в пределах 10 %). Эти данные поддерживаются и результатами дисперсионного анализа (табл. 3), где достоверная связь разной степени прочности отмечается в основном у видов первой группы.

Проведенный анализ показал, что все найденные характеристики пигментного аппарата (относительно высокие значения содержания суммы хлорофиллов и низкие каротиноидов, низкие значения соотношения ХЛ a/b, высокие значения соотношения ХЛ/car и высокие значения ССК) соответствуют растениям теневых местообитаний, в которых ведущим фактором являются условия освещения [6, 10,13]. Сходные значения содержания фотосинтетических пигментов у видов, растущих под пологом муссонного тропического леса в разные сезоны года, свидетельствуют о том, что ведущим фактором, определяющим развитие растений на начальных этапах онтогенеза, являются условия освещенности. К этому же заключению приходит в своих работах Schnitzer, который отмечает, что основным фактором во влажных тропических лесах, определяющим развитие растений независимо от сезона является свет [11].

Анализ зависимости содержания фотосинтетических пигментов от сезона года

Нами не было найдено различий в содержании фотосинтетических пигментов между лианами и деревьями, что согласуется с данными, полученными Sanchez-Azofeifa с соавторами [10], которые также не обнаружили разницы в содержании хлорофиллов, каротиноидов и отношении ХЛ/car в листьях лиан и деревьев во влажных тропических лесах. Но эти авторы работали со взрослыми деревьями и лианами, и это условие усложняет однозначную интерпретацию.

Читайте также:  Боли, дискомфорт в заднем проходе симптомы, причины Лечение и диагностика в Санкт-Петербург — сеть

У четырех (Lagerstroemia sp., Pterospermum sp., Ancistrocladus sp., Dalbergia sp.) изученных нами видов было найдено значительное изменение содержания фотосинтетических пигментов в сезонной динамике. Подобные результаты получены в работе Morais с соавторами [9], которые обнаружили увеличение содержания хлорофиллов во влажный сезон по сравнению с сухим у деревьев, произрастающих в сельве Амазонки. Особого внимания заслуживает факт увеличения содержания каротиноидов во влажный сезон, что, по мнению Frank с соавторами [7], способствует не только защите фотосинтетического аппарата от окислительного стресса [5], но и большему поглощению света. Увеличение ХЛ a/b, которое отмечается в нашей работе во влажный сезон, свидетельствует о повышении способности растений к поглощению света низкой интенсивности. Однако увеличение поглощения световой энергии должно сопровождаться ее более эффективным использованием в фотохимических реакциях. В нашей работе мы отмечаем только повышение содержания хлорофилла a, что, с большой долей вероятности, может быть связано с увеличение числа реакционных центров и, значит, с увеличением эффективности использования световой энергии. Результатом наблюдаемых изменений работы фотосинтетического аппарата может быть ускорение роста и развития растений и повышение их продуктивности. Это дает основание еще для одной гипотезы: в условиях влажного сезона снижается нагрузка на антиоксидантные системы, что и может быть причиной увеличения содержания хлорофилла а и эффективности фотохимических реакций фотосинтеза.

Полученные нами данные о сходстве реакции растений разных жизненных форм представляют большой интерес. Это прежде всего связано со сходством реакции пигментного аппарата растений видов разных жизненных форм на условия освещенности подлеска при отсутствии водного дефицита и при его наличии. В нашей предыдущей работе по водному режиму [1] также было показано существование двух групп видов в зависимости от факторов среды, и данные нашего исследования подтвердили наше заключение относительно того, что такие виды, как Ancistrocladus sp., Pterospermum sp., и Lagerstroemia sp., зависят от изменения факторов среды при переходе от сухого к влажному сезону. Наиболее значимые изменения в параметрах фотосинтетического аппарата были обнаружены у Pterospermum sp., у которого ведущим экологическим фактором является освещенность, и в ответ на изменение условий увлажнения этот вид наиболее значимо изменяет параметры фотосинтетического аппарата. Этот вид в отличие от Lagerstroemia sp. – доминанта этого типа леса, может выйти на более высокий ярус только в том случае, если появятся специальные условия, поскольку он не является исходно доминантом этих лесов. Виды второй группы, сохраняющие параметры фотосинтетического аппарата в течение годичного цикла, входят в группу видов с широкой экологической амплитудой и системами эндогенной регуляции основных физиологических процессов. Так, было показано, что Calamus sp. способен к системной регуляции водного режима, что и может обеспечить относительную стабильность его пигментного аппарата в обоих сезонах вегетации [1].

Выявленные различия между видами свидетельствуют о различных взаимоотношениях изученных видов с факторами среды. Таким образом, для видов муссонного тропического леса можно выделить два типа реакции на изменение факторов среды – лабильных и стабильных типов растений, что, как показало исследование, не зависит от жизненной формы, а определяется их исходной стратегией.

Результаты исследования показали, что независимо от жизненной формы основным фактором в муссонных тропических лесах, оказывающим влияние на развитие растений на начальных этапах онтогенеза, является свет. Нами не было выявлено разницы в содержании фотосинтетических пигментов и их отношениях между двумя жизненными формами как в сухой, так и во влажный сезоны. В то же время в зависимости от ответа растений на изменение гидрологических условий произрастания в течение года было выделено две группы растений – лабильных и стабильных типов растений. У лабильных растений (Lagerstroemia sp., Pterospermum sp., Ancistrocladus sp., Dalbergia sp.) наблюдаются значительные изменения в содержании фотосинтетических пигментов в течение года, что может приводить к изменению скорости роста и развития и повышению продуктивности растений. Для растений второй группы (Ancistrocladus sp., Dalbergia sp.) характерна относительная стабильность характеристик фотосинтетического аппарата, что может быть связано с эндогенной регуляцией основных физиологических процессов, в том числе с регуляцией водного режима.

Авторы выражают благодарность руководству Российско-Вьетнамского Тропического центра и администрации национального парка «Кат Тиен» за возможность проведения исследований.

Исследования выполнены в рамках плановой темы Совместного Российско-Вьетнамского Тропического научно-исследовательского и технологического центра, а также при финансовой поддержке РФФИ в рамках проекта № 12-04-31234 и при поддержке Программы стратегического развития (ПСР) ПетрГУ в рамках реализации комплекса мероприятий по развитию научно-исследовательской деятельности на 2012–2016 гг.

Рецензенты:

Кособрюхов А.А., д.б.н., старший научный сотрудник, руководитель группы экологии и физиологии фототрофных организмов Института фундаментальных проблем биологии РАН, г. Пущино;

Шмакова Н.Ю., д.б.н., руководитель сектора экофизиологии растений Полярно-альпийского ботанического сада-интитута им. Н.А. Аврорина Кольского научного центра РАН, г. Кировск.

Фотосинтез

Типы питания

По типу питания живые организмы делятся на автотрофы, гетеротрофы и миксотрофы. Автотрофы (греч. αὐτός — сам + τροφ — пища) — организмы, которые самостоятельно способны синтезировать органические вещества из неорганических. Гетеротрофы (греч. ἕτερος — иной + τροφή — пища) — организмы, использующие для питания готовые органические вещества.

Наконец, миксотрофы (греч. μῖξις — смешение + τροφή — пища) — организмы, которые могут использовать как гетеротрофный, так и автотрофный способ питания. К примеру, эвглена зеленая на свету начинает фотосинтезировать, а в темноте питается гетеротрофно.

Фотосинтез

Фотосинтез (греч. φῶς — свет и σύνθεσις — синтез) — сложный химический процесс преобразования энергии квантов света в энергию химических связей. В результате фотосинтеза происходит синтез органических веществ из неорганических.

Этот процесс уникален и происходит только в растительных клетках, а также у некоторых бактерий. Фотосинтез осуществляется при участии хлорофилла (греч. χλωρός — зелёный и φύλλον — лист) — зеленого пигмента, окрашивающего органы растений в зеленый цвет. Существуют и другие вспомогательные пигменты, которые вместе с хлорофиллом выполняют светособирающую или светозащитную функции.

Ниже вы увидите сравнение строения хлорофилла и гемоглобина. Обратите внимание, что в центре молекулы хлорофилла находится ион Mg.

В высшей степени гениально значение процесса фотосинтеза подчеркнул русский ученый К.А. Тимирязев: «Все органические вещества, как бы они ни были разнообразны, где бы они ни встречались, в растении ли, в животном или человеке, прошли через лист, произошли от веществ, выработанных листом. Вне листа или, вернее, вне хлорофиллового зерна в природе не существует лаборатории, где бы выделялось органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь из вещества неорганического»

Более подробно мы обсудим значение фотосинтеза в завершение этой статьи. Фотосинтез состоит из двух фаз: светозависимой (световой) и светонезависимой (темновой). Я рекомендую использовать названия светозависимая и светонезависимая, так как они способствуют более глубокому (и правильному!) пониманию фотосинтеза.

Светозависимая фаза (световая)

Эта фаза происходит только на свету на мембранах тилакоидов в хлоропластах. В ней принимают участие различные ферменты, белки-переносчики, молекулы АТФ-синтетазы и зеленый пигмент хлорофилл.

Хлорофилл выполняет две функции: поглощения и передачи энергии. При воздействии кванта света хлорофилл теряет электрон, переходя в возбужденное состояние. С помощью переносчиков электроны скапливаются с наружной поверхности мембраны тилакоидов, тем временем внутри тилакоида происходит фотолиз воды (разложение под действием света):

Гидроксид-ионы отдают лишний электрон, превращаясь в реакционно способные радикалы OH, которые собираются вместе и образуют молекулу воды и свободный кислород (это побочный продукт, который в дальнейшем удаляется в ходе газообмена).

Образовавшиеся при фотолизе воды протоны (H + ) скапливаются с внутренней стороны мембраны тилакоидов, а электроны — с внешней. В результате по обе стороны мембраны накапливаются противоположные заряды.

При достижении критической разницы, часть протонов проталкивается на внешнюю сторону мембраны через канал АТФ-синтетазы. В результате этого выделяется энергия, которая может быть использована для фосфорилирования молекул АДФ:

Читайте также:  Почему болит шея сзади после сна

Протоны, попав на поверхность мембраны тилакоидов, соединяются с электронами и образуют атомарный водород, который используется для восстановления молекулы-переносчика НАДФ (никотинамиддинуклеотидфосфат). Благодаря этому окисленная форма — НАФД + превращается в восстановленную — НАДФ∗H2.

Предлагаю создать квинтэссенцию из полученных нами знаний. Итак, в результате светозависимой фазы фотосинтеза образуются:

  • Свободный кислород O2 — в результате фотолиза воды
  • АТФ — универсальный источник энергии
  • НАДФ∗H2 — форма запасания атомов водорода

Кислород удаляется из клетки как побочный продукт фотосинтеза, он совершенно не нужен растению. АТФ и НАДФ∗H2 в дальнейшем оказываются более полезны: они транспортируются в строму хлоропласта и принимают участие в светонезависимой фазе фотосинтеза.

Светонезависимая (темновая) фаза

Светонезависимая фаза происходит в строме (матриксе) хлоропласта постоянно: и днем, и ночью — вне зависимости от освещения.

При участии АТФ и НАДФ∗H2 происходит восстановление CO2 до глюкозы C6H12O6. В светонезависимой фазе происходит цикл Кальвина, в ходе которого и образуется глюкоза. Для образования одной молекулы глюкозы требуется 6 молекул CO2, 12 НАДФ∗H2 и 18 АТФ.

Таким образом, в результате темновой (светонезависимой) фазы фотосинтеза образуется глюкоза, которая в дальнейшем может быть преобразована в крахмал, служащий для запасания питательных веществ у растений.

Значение фотосинтеза

Значение фотосинтеза невозможно переоценить. Уверенно утверждаю: именно благодаря этому процессу жизнь на Земле приобрела такие чудесные и изумительные формы, какие мы видим вокруг себя: удивительные растения, прекрасные цветы и самые разнообразные животные.

В разделе эволюции мы уже обсуждали, что изначально в составе атмосферы Земли не было кислорода: миллиарды лет назад его начали вырабатывать первые фотосинтезирующие бактерии — сине-зеленые водоросли (цианобактерии). Постепенно кислород накапливался, и со временем на Земле стало возможно аэробное (кислородное) дыхание. Возник озоновый слой, защищающий все живое на нашей планете от губительного ультрафиолета.

Говоря о роли фотосинтеза, выделим следующие функции, объединяющиеся в так называемую космическую роль растений. Итак, растения за счет фотосинтеза:

  • Синтезируют органические вещества, являющиеся пищей для всего живого на планете
  • Преобразуют энергию света в энергию химических связей, создают органическую массу
  • Растения поддерживают определенный процент содержания O2 в атмосфере, очищают ее от избытка CO2
  • Способствуют образованию защитного озонового экрана, поглощающего губительное для жизни ультрафиолетовое излучение

Хемосинтез (греч. chemeia – химия + synthesis — синтез)

Хемосинтез — автотрофный тип питания, который характерен для некоторых микроорганизмов, способных создавать органические вещества из неорганических. Это осуществляется за счет энергии, получаемой при окислении других неорганических соединений (железо- , азото-, серосодержащих веществ).

Хемосинтез был открыт русским микробиологом С.Н. Виноградским в 1888 году. Большинство хемосинтезирующих бактерий относится к аэробам, для жизни им необходим кислород.

При окислении неорганических веществ выделяется энергия, которую организмы запасают в виде энергии химических связей. Так нитрифицирующие бактерии последовательно окисляют аммиак до нитрита, а затем — нитрата. Нитраты могут быть усвоены растениями и служат удобрением.

Помимо нитрифицирующих бактерий, встречаются:

  • Серобактерии — окисляют H2S —> S 0 —> (S +4 O3) 2- —> (S +6 O4) 2-
  • Железобактерии — окисляют Fe +2 —>Fe +3
  • Водородные бактерии — окисляют H2 —> H +1 2O
  • Карбоксидобактерии — окисляют CO до CO2
Значение хемосинтеза

Хемосинтезирующие бактерии являются неотъемлемым звеном круговорота в природе таких элементов как: азот, сера, железо.

Нитрифицирующие бактерии обеспечивают переработку (нейтрализацию) ядовитого вещества — аммиака. Они также обогащают почву нитратами, которые очень важны для нормального роста и развития растений (это происходит за счет клубеньковых бактерий на корнях бобовых растений).

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Фотосинтетические пигменты — ФОТОСИНТЕЗ — СТРОЕНИЕ РАСТИТЕЛЬНОЙ КЛЕТКИ — КЛЕТКА

Они представлены молекулами, способными поглощать кванты (нем. Quantum — количество, лат. quantum — сколько) света. Поскольку при этом поглощается свет лишь определенной длины волны, часть световых волн не поглощается, а отражается. В зависимости от спектрального состава отраженного света пигменты приобретают окраску — зеленую, желтую, красную и др. В настоящее время различают три класса фотосинтетических пигментов — хлорофиллы, каротиноиды и фикобилины.

Самым распространенным и наиболее важным фотосинтетическим пигментом является хлорофилл (греч. chloros — зеленоватый, phyllon — лист), который имеется практически у всех фототрофов (напоминаем, что фототрофами называются автотрофные организмы, способные к фотосинтезу). Хлорофилл неоднороден, насчитывается свыше десятка зеленых пигментов, отличающихся друг от друга атомными группами, присоединенными к пиррольным структурам порфиринового кольца, а также по некоторым другим характеристикам. Поэтому целесообразно начать с химической характеристики хлорофилла и других фотосинтетических пигментов.

Химически хлорофилл представляет собой сложный эфир дикарбоновой кислоты хлорофиллина с двумя спиртами — фитолом и метанолом. Пространственная структура молекулы определяет свойства хлорофилла. Основой является плоское порфириновое ядро, образованное четырьмя пиррольными кольцами, соединенными между собой метиновыми мостиками, с атомом магния в центре (рис. 43). В порфириновом ядре, кроме собственно пиррола, содержатся также его изомер — пир- роленин и продукт неполного восстановления пиррола — пирролин. Поскольку в этих циклических соединениях, помимо атомов углерода, присутствует гетероатом (греч. heteros — другой) — азот, они называются гетероциклическими. Наличие двойных связей позволяет отнести их к ненасыщенным гетероциклам. Атомы углерода, расположенные в гетероцикле рядом с гетероатомом — азотом, обозначаются как а-атомы, а удаленные от него — Д-атомы. Поскольку все связи а-углеродных атомов в молекуле хлорофилла заняты в формировании порфиринового кольца, они не определяют специфику различных видов хлорофилла, эту функцию выполняют Д-углеродные атомы. Сами атомы азота взаимодействуют с расположенным в центре ядра атомом металла — магнием (отметим, что у близкого по строению гема, входящего в состав гемоглобина, миоглобина или цитохрома, в центре ядра находится атом железа). Так как в порфириновом ядре имеются многочисленные двойные связи, там присутствуют делокализованные (более подвижные) p-электроны, которых в ядре насчитывается 18. Позднее мы расскажем о значении таких электронов для фотосинтеза.

Фитол относится к дитерпенам, основу которых составляют остатки изопрена.

Такая структура молекулы определяет свойства хлорофилла — гидрофобный фитольный «хвост» надежно удерживает молекулу в гидрофобной части мембраны тилакоида хлоропласта, а гидрофильное порфириновое ядро обращено к строме хлоропласта. При этом само ядро ориентировано параллельно мембране, в которой находится хлорофилл.

Синтез хлорофилла довольно сложен и включает в себя 15 реакций, которые можно разделить на три этапа. Исходными веществами для синтеза хлорофилла являются глицин и ацетат. На первом этапе образуется -аминолевулиновая кислота. На втором этапе происходит синтез одной молекулы протопорфирина из четырех пиррольных колец. Третий этап представляет собой образование и превращение магнийпорфиринов.

Все низшие и высшие растения, а также цианобактерии содержат различные хлорофиллы типа а. У высших растений, зеленых и эвгленовых водорослей имеется хлорофилл b(он образуется из хлорофилла а), который отличается от хлорофилла а присутствием формильной группы -СНО, вместо метильной (-СН3) у третьего атома углерода. Бурые и диатомовые водоросли вместо хлорофилла b содержат хлорофилл с, не имеющий остатка фитола, а красные водоросли — хлорофилл d, который отличается от хлорофилла а тем, что при углеродном атоме 2 порфиринового кольца вместо винильной группы имеется формильный радикал. Хлорофиллы бактерий имеют некоторые специфические особенности и называются бактериохлорофиллами.

Молекулы хлорофиллов способны, взаимодействуя друг с другом и молекулами белков, создавать агрегированные формы, различающиеся по длине волн поглощенного света.Хлорофилл а имеет два четко выраженных максимума поглощения — 660 — 663 нм и 428 — 430 нм. Хлорофилл b поглощает более короткие волны в красной части спектра и более длинные в синей. Его максимумы поглощения будут 642 — 644 нм и 452 — 455 нм соответственно. Все хлорофиллы слабо поглощают желтый и оранжевый свет, а зеленый они отражают, что и определяет зеленую окраску этого класса пигментов (рис. 44).

Читайте также:  Кетонал® (Ketonal®) - инструкция по применению, состав, аналоги препарата, дозировки, побочные дейст

Бактериохлорофиллы отличаются от прочих типов хлорофиллов тем, что способны поглощать красный свет гораздо большей длины, чем хлорофиллы растений. Так, бактериохлорофилл зеленых бактерий утилизирует волны длиной 850 нм, бактериохлорофилл а пурпурных бактерий до 900 нм, а бактериохлорофилл b пурпурных бактерий — до 1100 нм. Это обстоятельство позволяет бактериям, особенно пурпурным, активно расти при наличии лишь не видимых человеческим глазом инфракрасных лучей.

Другую обязательную группу фотосинтетических пигментов образуют каротиноиды (лат. carota — морковь). Эти жирорастворимые пигменты имеют различную окраску — от желтой до красной. Они содержатся во всех окрашенных пластидах (хлоропластах и хромопластах) растений. Причем в зеленых частях растений хлорофилл маскирует каротиноиды, делая их незаметными до наступления холодов. Осенью зеленые пигменты разрушаются, и каротиноиды становятся хорошо заметными, определяя окраску осенних листьев. Кроме растений, каротиноиды синтезируют фототрофные бактерии и грибы.

Каротиноиды в растительном организме выполняют ряд функций, среди которых наиболее очевидными являются следующие: участие в фотосинтезе в качестве дополнительных пигментов антенных комплексов. Они способны поглощать свет, не доступный для других пигментов, и передавать его хлорофиллам. Кроме того, каротиноиды ослабляют фотоокисление хлорофилла в присутствии кислорода.

Третьей группой фотосинтетических пигментов являются фикобилины (греч. phykos — водоросль, лат. bilis — желчь), которые присутствуют у некоторых водорослей (красных) и цианобактерий. Отдельными молекулами фикобилины, как правило, не представлены, а образуют комплексы с белками, с которыми они, в отличие от хлорофиллов, связаны прочными ковалентными связями. Комплексы таких пигментов с белками называются фикоби- липротеидами (хромопротеидами).

Согласно первому закону термодинамики энергия не может исчезать или возникать ниоткуда — она может лишь переходить из одного состояния в другое. Согласно второму закону термодинамики часть энергии в процессе такого перехода теряется в виде тепла из-за энтропии, причем величина энтропии возрастает при необратимых процессах (например, теплопроводность, диффузия) и остается постоянной при обратимых. Поэтому при межмолекулярной передаче молекула всегда отдает большее количество энергии, чем ее в итоге получает молекула-акцептор.

Величина энергии электрона определяет расстояние от него до ядра — чем меньше энергия электрона, тем ближе он к ядру, и наоборот. Любому энергетическому состоянию электрона соответствует определенный энергетический уровень (квантовый слой), характеризуемый главным квантовым числом п, которое имеет значения от единицы до бесконечности. Соответственно электрон, будучи на первом уровне, обладает минимальной энергией и максимально близок к ядру, а находясь на наиболее удаленном уровне, обладает максимальной энергией. При переходе на более далекий уровень электрон поглощает энергию, а при возврате на более близкий — выделяет в виде порций (квантов).

Согласно сказанному выше электроны молекул пигментов, поглотив энергию, переходят на более высокий энергетический уровень, т.е. становятся возбужденными. Однако рано или поздно они возвращаются на свой исходный (стационарный) уровень, выделив энергию, полученную ранее при возбуждении.

Молекула хлорофилла, поглотив порцию (квант) света, переходит в несколько иное по сравнению с обычным состояние, которое называют возбужденным. Это состояние отличается от тепловой активации молекул, поскольку каждый квант возбуждает лишь одну молекулу хлорофилла, передавая ей свою энергию. При этом квант поглощается не всей молекулой хлорофилла, а лишь одним из ее электронов, причем наиболее легко активируются электроны, находящиеся в порфириновом кольце хлорофилла. Поглотивший квант света электрон временно переходит со своего основного энергетического уровня на более высокий. При этом на основном уровне место перешедшего электрона остается вакантным (появляется электронная «дырка») и вся молекула становится возбужденной. Возврат электрона на исходный уровень сопровождается выделением энергии в виде тепла, или же она высвечивается в виде кванта света с длиной волны всегда большей (правило Стокса), чем у поглощенного кванта света.

Количество фиксированных молекул углекислого газа в расчете на единицу поглощенной энергии определяет энергетическую эффективность фотосинтеза. Как мы уже говорили, у основного фотосинтетического пигмента хлорофилла имеются два пика поглощения света — в синей и красной, а также частично в инфракрасной частях спектра. Солнце излучает максимальное количество квантов длинноволновой части спектра, и следует отметить, что энергетическая эффективность таких лучей почти вдвое выше, чем синих, потому что при поглощении высоко энергетически насыщенных коротких волн происходит тепловое рассеивание значительной части энергии.

Итак, в основе всех энергетических процессов, которым происходят в живых организмах, лежит энергия возбужденного электрона хлорофилла, которую он получает, поглощая квант света. Теперь настало время проследить путь этого электрона, причем, как мы увидим позже, он в прямом смысле этого слова может быть весьма извилистым.

В мембранах тилакоидов хлоропластов были обнаружены комплексы молекул, названные фотосистемой I и фотосистемой II. Они совместно обеспечивают трансформацию световой энергии в удобную для использования живыми организмами энергию химических связей.

Каждая из фотосистем имеет реакционный центр (рис. 45), который образован пронизывающими насквозь мембрану тилакоида белками, ассоциированными с хлорофиллом (напомним, что комплекс молекулы белка с пигментом называется хромопротеидом). Пигменты реакционного центра способны поглощать энергию света, которая переводит электроны в неустойчивое возбужденное состояние, в результате чего они покидают молекулу хлорофилла и переходят на расположенные поблизости молекулы-переносчики. Это говорит о том, что находящийся в реакционном центре хлорофилл способен осуществлять фотохимические реакции.

Вторым обязательным компонентом фотосистемы является антенным комплекс. В нем также имеется хлорофилл, причем на его долю приходится до 60% общего количества хлорофилла тилакоидных мембран. Специальные исследования показали, что на один реакционный центр приходится 200 — 400 молекул хлорофилла, расположенных в антенных комплексах. Кроме хлорофилла а, здесь присутствуют еще и дополнительные пигменты — хлорофилл в, каротиноиды и фикобилины. Их роль заключается в улавливании света с длиной волн, не доступной для хлорофилла а. Следует отметить, что молекулы пигментов антенных комплексов, пребывая в возбужденном состоянии (в результате поглощения энергии фотона), не осуществляют фотохимических реакций, зато они эффективно передают полученную энергию по цепи хлорофиллу реакционного центра. Направление переноса энергии (электроны здесь не передаются) в антенных комплексах всегда ориентировано от пигментов, поглощающих самую короткую часть спектра (каротиноидов), к более «длинноволновым» пигментам. Как мы уже говорили, такой процесс получил название резонансной передачи энергии. При этом резонансная передача энергии, осуществляемая между одинаковыми молекулами хлорофилла, получила название гомогенной, если же энергия переносится на другой тип пигмента, то перенос называется гетерогенным.

Рассмотрим устройство фотосистемы I. Считается, что исторически она возникла раньше фотосистемы II и в настоящее время имеется практически у всех фотосинтезирующих организмов, включая способных к фотосинтезу бактерий (у последних отсутствует фотосистема II и, следовательно, не происходит разложения воды и выделения кислорода). В состав реакционного центра этой фотосистемы входят хромопротеиды, содержащие самую длинноволновую форму хлорофилла (его сокращенно обозначают как П700, показывая тем самым длину волны, которую способен поглощать конкретный пигмент). Антенный комплекс этой фотосистемы включает в себя 110 молекул хлорофиллов группы а, имеющих максимумы поглощения от 675 до 695 нм.

Согласно теории эволюции фотосистема II в процессе исторического развития появилась позже. На современном этапе она присутствует у всех зеленых растений, а также у сине-зеленых водорослей. Белковые комплексы фотосистемы II включают в себя несколько более коротковолновые формы хлорофилла. Реакционный центр содержит более коротковолновую форму хлорофилла а — П680. В антенном комплексе имеются хлорофиллы а670-683.

Кроме того, в мембранах тилакоидов находятся непосредственно связанные с фотосистемой II светособирающие белковые комплексы, в которых присутствуют хлорофиллыа660-675, а также хлорофилл в650 (несколько в большем количестве, чем хлорофилл а) и каротиноиды.

Весьма сложные и разнообразные реакции фотосинтеза, в основе которых лежат фотохимические процессы, в конечном итоге преобразуют энергию света в химическую. Однако наличие света необходимо отнюдь не для всех этапов, а лишь вначале, поэтому в фотосинтезе выделяют световую и темновую стадии.

Ссылка на основную публикацию
Сода от зубной боли народные рецепты для полоскания полости рта
Полоскание зубов Полоскания помогают справиться с зубной болью, снимают воспалительные процессы, избавляют от плохого запаха изо рта. Чем полоскать зуб,...
Со скольки месяцев можно прикармливать ребенка
Первый прикорм для ребенка Когда вводить первый прикорм Сегодня нет каких-то жестких и строгих правил и сроков по введению прикорма....
Собака после прививки вялая и плохо себя чувствует, сколько карантин у щенков, осложнения после вакц
Вакцинация – почему это важно В клинике «Биоконтроль» проводится вакцинация кошек и собак поливалентными вакцинами зарубежного производства. Стоимость вакцины (без...
Сода пищевая — «Самый быстрый способ избавиться от стоматита
Полоскания содой при стоматите Пищевая сода при стоматите применяется уже давно, как дополнительный способ лечения к общей терапии. Этим лечебным...
Adblock detector