Слово АНТАГОНИСТ — Что такое АНТАГОНИСТ Значения слова, примеры употребления

АНТАГОНИЗМ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ

Расстановка ударений: АНТАГОНИ`ЗМ ЛЕКА`РСТВЕННЫХ ВЕЩЕ`СТВ

АНТАГОНИЗМ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ — результат совместного применения фармакологических средств, выражающийся отсутствием или ослаблением эффекта.

Результат совместного действия лекарственных веществ оценивается как антагонистический только в отношении конкретных эффектов и при определенном соотношении доз (концентраций); при изменении сочетания доз и в отношении других эффектов комбинируемые вещества могут не проявлять антагонизма или даже усиливать друг друга. Наиболее точная оценка антагонистических отношений веществ достигается при помощи графических методов, позволяющих при различных вероятных количественных соотношениях комбинируемые веществ установить наличие антагонизма, при к-ром два вещества в дозах, сумма к-рых составляет 1 (напр., 1 /4A+ 3 /4В, 1 /2А+ 1 /2В), не могут при совместном воздействии вызвать такого эффекта (или той же степени эффекта), какой наблюдается при использовании полных доз любого из комбинируемых веществ в отдельности.

Различают физ., хим. и функциональный антагонизм. Примером физичесдого антагонизма может служить адсорбция ядов активированным углем. В основе хим. антагонизма лежит хим. взаимодействие веществ, протекающее с образованием неактивного соединения. Такой антагонизм отмечается между тиосульфатом и цианидами, к-рые сульфируются, превращаясь в малоядовитые роданиды.

Антагонистами являются тиоловые соединения (напр., цистеин или унитиол) и соединения мышьяка, ионов ртути, кадмия и нек-рых других металлов. Хим. антагонизм проявляется также при взаимодействии комплексонов (см.) с ионами многих металлов; он широко используется при лечении отравлений (см. Противоядия).

Процессы, лежащие в основе физ. и хим. антагонизма, протекают в организме так же, как и вне его. Функциональный антагонизм реализуется исключительно через функциональные системы организма, т. е. опосредуется биосубстратом. Различают прямой и косвенный (непрямой) функциональный А. л. в. В последнем случае противодействие веществ осуществляется через разные клеточные элементы. Напр., курареподобные вещества, воздействуя на холинорецептивную область волокон скелетных мышц, устраняют судороги, обусловленные воздействием стрихнина на мотонейроны спинного мозга. Прямой функциональный антагонизм имеет место при воздействии веществ на одни и те же клетки; он бывает конкурентным, неравновесным, неконкурентным и независимым.

При конкурентном антагонизме вещество-антагонист обратимо взаимодействует с теми же воспринимающими структурами (рецептивными субстанциями, биорецепторами) клетки, что и вещество-агонист. При этом молекулы антагониста пропорционально их концентрации в биофазе уменьшают вероятность взаимодействия молекул агониста с биорецепторами клетки. Влияние антагониста преодолевается соответствующим повышением концентрации (дозы) агониста, так что максимум его эффекта достигается и в присутствии антагониста, а кривые «логарифм концентрации — эффект агониста», полученные в отсутствие и в присутствии антагониста, параллельны.

Многие лекарственные вещества являются конкурентными антагонистами функционально значимых метаболитов (витаминов, гормонов, медиаторов), выступая в роли антиметаболитов (см.). Напр., сульфаниламиды обнаруживают конкурентный антагонизм с парааминобензойыой кислотой (ПАБК), фентоламин — с адреналином и норадреналином, (—)-гиосциамин и атропин — с ацетил-холином, димедрол — с гистамином. Отношения конкурентного антагонизма существуют также между соединениями, среди к-рых ни одно не является метаболитом. Напр., атропин — -конкурентный антагонист пилокарпина; (+)-тубокурарин является конкурентным антагонистом не только ацетилхолина, но и дитилина. Конкурентные отношения с функционально значимыми метаболитами положены в основу современных представлений о механизме действия ряда лекарственных веществ. Так, проти-вомикробный эффект сульфаниламидов объясняют их конкуренцией с ПАБК; холинолитическое действие атропина, ганглиоблокаторов и ряда курареподобных веществ определяется как результат их конкуренции с медиатором ацетилхолином в холинергических синапсах. На принадлежности соединений к конкурентным антагонистам определенного метаболита основана классификация многих лекарственных веществ.

При неравновесном антагонизме агонист и антагонист также взаимодействуют с одними и теми же биорецепторами, но взаимодействие антагониста с биорецепторами практически необратимо. Восстановление активности ингибированного неравновесным антагонистом биосубстрата обычно достигается лишь применением реактиваторов. В присутствии неравновесного антагониста (напр., дибенамина) максимальный эффект агониста (напр., норадреналина или гистамина) не достигается даже при самых высоких его концентрациях, а кривая «логарифм концентрации — эффект агониста» имеет меньший максимум и наклон и оказывается непараллельной кривой, полученной в присутствии антагониста.

При неконкурентном антагонизме антагонист взаимодействует с биорецептором вне его активного центра (аллостерически, в аллотопическом месте), изменяя эффективность взаимодействия с этим рецептором агониста и уменьшая эффект последнего. Нередко, однако/этим термином обозначают также все случаи функционального антагонизма (неравновесного, собственно неконкурентного и независимого), которые не удовлетворяют критериям конкурентного.

При независимом антагонизме лекарственные вещества действуют на разные биорецепторы клетки, изменяя ее функцию в противоположных направлениях. Напр., спазм гладких мышц, вызываемый карбахолином в результате его воздействия на м-холинорецепторы мышечных волокон, уменьшается адреналином, расслабляющим гладкие мышцы через адренорецепторы.

См. также Синергизм лекарственных веществ.

Библиогр.: Альберт Э. Избирательная токсичность, пер. с англ., с. 173 и др., М., 1971, библиогр.; Вулли Д. Учение об актиметаболитах, пер. с англ., М., 1954; Карасик В. М. О конкурентных отношениях в фармакологических реакциях, Усп. совр. биол., т. 20, № 2, с. 129, 1945, библиогр.; он же, Прошлое и настоящее фармакологии и лекарственной терапии, с. 131, Л., 1965; Комиссаров И. В. Элементы теории рецепторов в молекулярной фармакологии, с 43 М., 1969, библиогр.; Лазарев Н. В. Общие основы промышленной токсикологии, с. 337 и др., М.—Л., 1938, библиогр.; Ariëns E. J. а. Simonis A. M. Drugreceptor interaction, Acta physiol pharmacol. neerl., v. 11, p. 151, 1962 bibliogr.; Bürgi E. Die Arzneikombinationen, В., 1938; Clark A. J. General pharmacology, Handb. exp. Pharmakol. hrsg. v. W. Heubner u. J. Schüller, Bd k S 95 u. а., В., 1937; Drug antagonism, Pharmacol. Rev., v. 9, p. 211, 1957, bibliogr.; Loewe S. Die quantitativen Probleme der Pharmakologie, Ergebn Physiol., Bd 27, S. 47, 1928; Marquardt P. Konkurrenzphänomene als Grundlage pharmakologischer Wirkung, Pharmazie, Bd 4 № 6, S. 249, 1949, Bibliogr.; Quantitative methods in pharmacology, ed. by H. Jonge, Amsterdam, 1961; Zipf H. F. u Hamacher J. Kombinationseffekte, Arzneimittel-Forsch., Bd 15, S. 1267 1965, Bd 16, S. 329, 1966, Bibliogr.

  1. Большая медицинская энциклопедия. Том 1/Главный редактор академик Б. В. Петровский; издательство «Советская энциклопедия»; Москва, 1974.- 576 с.
Читайте также:  Обморожение — причины, симптомы и первая помощь Государственное автономное учреждение Свердловской

Взаимодействия лекарственного вещества с рецептором

, PhD, PharmD, Columbia Southern University, Orange Beach, AL

Last full review/revision October 2016 by Abimbola Farinde, PhD, PharmD

  • 3D модель (0)
  • Аудио (0)
  • Боковые панели (0)
  • Видео (0)
  • Изображения (0)
  • Клинический калькулятор (0)
  • Лабораторное исследование (0)
  • Таблица (1)

Рецепторы – это макромолекулы, участвующие в передаче химических сигналов как между клетками, так и внутри одной клетки; они могут находится на поверхности клеточной мембраны или в цитоплазме ( Некоторые типы рецепторов физиологических агонистов и рецепторов лекарственных препаратов). Активированные рецепторы прямо или косвенно регулируют клеточные биохимические процессы (например, проводимость ионных каналов, фосфорилирование белков, транскрипцию ДНК, ферментативную активность).

Молекулы (к примеру, лекарственные препараты, гормоны, нейротрансмиттеры), которые связываются с рецептором, называются лигандами. Связывание может быть специфическим и обратимым. Связывание с лигандом может приводить к активации либо инактивации рецептора; активация может стимулировать либо ингибировать ту или иную клеточную функцию. Каждый лиганд способен взаимодействовать с различными подтипами рецепторов. Почти не существует препаратов, абсолютно специфичных к одному рецептору или его подтипу, но большинство из них имеет относительную селективность. Селективность – это степень, с которой лекарственное средство действует на определенный участок относительно других участков; селективность относится в основном к физико-химическому связыванию препарата с клеточными рецепторами.

Некоторые типы рецепторов физиологических агонистов и рецепторов лекарственных препаратов

Рецепторы, сопряженные с ионными каналами

Трансмембранные белки клеточной поверхности

Ацетилхолин (в случае N-холинорецепторов)

Рецепторы, сопряженные с G-белками

Трансмембранные белки клеточной поверхности

Ацетилхолин (в случае M-холинорецепторов)

α Агонисты альфа-бета-адренергических рецепторов

Трансмембранные белки клеточной поверхности

ГАМК (GABA) = γ -аминомасляная кислота; ГДФ = гуанозиндифосфат; ГТФ = гуанозинтрифосфат.

Способность лекарственного препарата воздействовать на конкретный тип рецептора зависит от его аффинности (вероятности того, что ЛС займет рецептор в определенный момент времени) и внутренней активности (степени активации рецептора после связывания с лигандом и развития клеточной реакции). Аффинность и внутренняя активность лекарственного вещества в свою очередь определяются его химической структурой.

Фармакологический эффект определяется также длительностью сохранения комплекса «препарат-рецептор» (время удержания). На продолжительность существования комплекса «препарат-рецептор» влияют динамические процессы (изменения конформации), которые контролируют скорость ассоциации и диссоциации лекарственных веществ от своей мишени. Большее время удержания служит объяснением продолжительному фармакологическому действию. К препаратам с длительным временем удержания относятся финастерид и дарунавир. Длительное время удержания может быть потенциальным недостатком, если за этот счет продлевается и токсический эффект препарата. Для некоторых рецепторов транзиторное связывание производит нужный фармакологический эффект, в то время как длительное связывание провоцирует токсичность.

Физиологические функции (такие как сокращение, секреция), как правило, регулируются множественными рецептор-опосредованными механизмами и включают несколько этапов (связывание с рецептором, активация внутриклеточных вторичных мессенджеров и т. д.) между первоначальным взаимодействием лекарственного вещества с рецептором и конечным ответом ткани или органа. По этой причине один и тот же желаемый фармакологический эффект может быть достигнут применением ЛС с разной химической структурой.

На способность препарата связываться с рецептором оказывают влияние внешние факторы, а также внутриклеточные регуляторные механизмы. Исходная плотность рецепторов и эффективность механизмов ответа на стимул варьируют от ткани к ткани. Лекарственные средства, старение, мутации и заболевания могут повышать (активировать) или снижать (подавлять) число и аффинность рецепторов. Например, клонидин снижает активность альфа22-адренорецепторов; по этой причине быстрая отмена клонидина может спровоцировать гипертонический криз. Длительная терапия бета-блокаторами повышает плотность бета-рецепторов, в связи с чем резкое прекращение приема данного класса препаратов может вызвать развитие тяжелой гипертензии или тахикардии. Стимуляция и ингибирование рецепторов влияют на механизмы приспособления организма к лекарственному средству (например, в виде гипосенсибилизации, тахифилаксии, толерантности, приобретенной резистентности и гиперчувствительности после отмены).

Лиганды связываются с определенными участками на макромолекуле рецептора, называемыми сайтами узнавания. Места связывания лекарственного вещества и эндогенного агониста (гормона или нейротрансмиттера) могут быть идентичными либо различаться. Агонисты, связывающиеся со смежным или другим сайтом, иногда называются аллостерическими агонистами. Также происходит неспецифическое связывание препаратов, т.е. с молекулярными участками, не являющимися рецепторами (например, белками плазмы крови). Связывание лекарственного вещества с подобными неспецифическими участками, например, связывание с белками сыворотки крови, препятствует его связыванию с рецептором, тем самым делая препарат неактивным. Несвязанные препараты способны взаимодействовать с рецепторами и, следовательно, вызывать эффект.

Читайте также:  Внутривенная урография Bērnu klīniskā universitātes slimnīca

Агонисты и антагонисты

Агонисты активируют рецепторы для реализации желаемого фармакологического эффекта. Традиционные агонисты повышают долю активированных рецепторов. Обратные агонисты стабилизируют рецепторы в их неактивной конформации и действуют аналогично конкурентным агонистам ( Агонисты и антагонисты). Многие гормоны, нейротрансмиттеры (например, ацетилхолин, гистамин, норадреналин ) и лекарственные средства (например, морфин, фенилэфрин, изопреналин, бензодиазепины, барбитураты) действуют как агонисты рецепторов.

Антагонисты препятствуют активации рецептора. Предотвращение активации оказывает множество эффектов. Антагонисты усиливают клеточную функцию в том случае, если они блокируют действие вещества, обычно подавляющего данную функцию. Справедлива и обратная закомерность: антагонисты снижают клеточную функцию, если блокируют действие вещества, усиливающего ее.

Антагонисты рецепторов могут быть классифицированы на обратимые и необратимые. Обратимые антагонисты легко диссоциируют от соответствующих рецепторов, необратимые – образуют стабильную, постоянную или почти постоянную химическую связь со своим рецептором (например, при алкилировании). Псевдообратимые антагонисты медленно разрывают связь со своим рецептором.

При конкурентном антагонизме связывание антагониста с рецептором препятствует связыванию с ним агониста.

При неконкурентном антагонизме агонист и антагонист могут связываться одновременно, но связывание антагониста снижает эффект агониста либо препятствует его развитию.

При обратимом конкурентном антагонизме агонист и антагонист образуют кратковременные связи с рецептором, в результате чего достигается равновесное состояние этой трехкомпонентной системы. Такой антагонизм можно преодолеть путем увеличения концентрации агониста. Например, налоксон (антагонист опиоидных рецепторов, структурно схожий с морфином) при введении незадолго до или сразу после введения морфина блокирует действие последнего. Тем не менее конкурентный антагонизм налоксона может быть преодолен с помощью введения морфина в большей дозе.

Такие лекарственные вещества называются частичными агонистами или агонистами-антагонистами. Структурные аналоги молекул агониста часто обладают одновременно свойствами агониста и антагониста. Например, пентазоцин активирует опиоидные рецепторы, но блокирует их активацию другими опиоидами. Таким образом, пентазоцин обеспечивает опиоидное действие, но ослабляет эффект другого опиоида, если последний вводится в период сохранения связи пентазоцина с рецептором. Лекарственное средство, действующее как частичный агонист в одной ткани, может действовать как полный агонист в другой.

Антагонист (фармакология)

Общие определения

Антагонистом рецептора в биохимии и фармакологии называется вещество, которое не вызывает биологического ответа при связывании с рецептором, но, при этом, блокирует или подавляет ответ, вызванную агонистами данного рецептора. В фармакологических моделях антагонистам присуща сродство, но не присуща эффективность в отношении соответствующих рецепторов их связывания подавляет эффекты агонистов и обратных агонистов на рецепторе. Антагонисты могут связываться как с тем же местом связывания (сайтом) на рецепторе, что и агонист (конкурентные антагонисты), так и с другими рецепторными сайтами (неконкурентные и бесконкурентная антагонисты). В зависимости от силы связывания антагониста с рецептором (то есть, фактически значение константы диссоциации комплекса рецептор-антагонист) эффект антагониста может быть обратным или необратимым: последний случай наблюдается, когда диссоциация антагониста с рецептора является практически невозможной. Большинство антагонистов — лекарственных средств являются конкурентными по природе своего действия; кроме того, в фармакологии поиск и совершенствование лекарственных средств в случае антагонистов ведется преимущественно среди веществ-антагонистов с конкурентным типом действия: это обусловлено простыми математическими моделями, необходимыми для предсказания характеристик их эффектов. В нейрофармакологии и нейрофизиологии учитывая, что высокоаффинные антагонисты нейрорецепторы способны нарушать связи между нервными клетками, их хроническое употребление считается опасным.

Биохимическое определение понятия «антагонист» было предложено химиками Ариенсом и Стивенсом в 1950-е годы; современное определение антагониста базируется на оккупированной модели рецепторного действия. Оно определяет в качестве антагонистов только те соединения, имеющие противоположные эффекты при воздействии на некоторое рецептор. Также это определение используется для «физиологических антагонистов»: веществ, которые имеют противоположные физиологические эффекты, но реализуют их благодаря действию на различные рецепторы. Примером физиологического антагонизма могут быть гистамин, который снижает артериальное давление благодаря расширению кровеносных сосудов путем воздействия на рецепторов Н1, и адреналин, который повышает артериальное давление благодаря активации β-адренорецепторов.

Понимание механизмов рецепторной активации и деактивации, как и теория рецепторов в целом, меняются со временем вместе с биохимическим определением понятия рецепторного антагониста. Так, модель рецептора с двумя состояниями (активным и неактивным) была позже заменена на модель со многими состояниями.

Кроме того, открытие функциональной селективности лигандов и наличии лиганд-специфичных конформации рецептора, которые способны влиять на взаимодействие рецептора со следующими звеньями биохимического каскада, который он активирует, дает возможность синтеза веществ, способных блокировать (или активировать) некоторые из функций конкретного рецептора, не влияя на других. Это, в свою очередь, означает, что эффективность антагониста зави места (клеточной или тканевой структуры), где находится рецептор, противоречит достаточно устоявшейся тезисе об эффективности, как постоянную и независимую свойство биологически активного вещества.

Фармакологические

Эффективность и сила

По определению, антагонисты эффективности не проявляют. После связывания с рецептором антагонист подавляет эффекты агонистов, обратных агонистов, и других антагонистов. При фармакологическом анализе эффектов антагонистов используется кривая доза-эффект, иллюстрирующую способность различных концентраций (или доз) антагонистов подавлять эффект агониста. Эффективность антагониста обычно определяется по величине его ИС 50. То есть, чем меньше величина ИС 50, тем меньше концентрация антагониста нужна для достижения желаемого эффекта; поэтому в фармакологии поиск новых лекарственных средств часто ведется в направлении веществ с низкими ИС 50: это позволяет предотвращать в развит побочных эффектов при их применении.

Читайте также:  Медицинские специальности

Сродство

Аффинность антагониста к его сайту связывания (K i), то есть его способность связываться с рецептором, определяет время и силу подавления антагонистом действия агониста. Аффинность антагониста в опыте может быть определена за помощью регрессии Шилда (изодинамичнои кривой), или, для конкурентных антагонистов, в опыте с применением радиоактивно меченого вещества с использованием уравнения Ченга-Прусова. Изодинамична кривая может использоваться для определения природы действия антагониста, и его аффинности независимо от аффинности, концентрации и эффективности использованного агониста; но для этого нужно достижения равновесного эффекта, что не всегда возможно.

Типы антагонистов

Конкурентные

Конкурентный антагонист — вещество, способное связываться с рецептором на том же сайте связывания, что и агонист или эндогенный лиганд, при этом не активируя рецептор, но блокируя связывание агониста. В случае действия конкурентного антагониста уровень активации рецепторов определяется соотношением аффинности антагониста и агониста, умноженных на их концентрации: наличие в среде антагониста с высокой аффинностью требует более высокой, чем в антагониста, концентрации агониста с более низкой аффинностью для достижения аналогичного эффекта. Конкурентный тип действия антагониста оказывается при смещение кривой доза-эффект вправо (то есть увеличении значения ЕС 50) агониста без изменения его максимального возможного эффекта.

Примером конкурентного антагониста является бикукулин относительно ГАМК A рецептора.

Конкурентные антагонисты часто (хотя и не всегда) по структуре молекулы очень близки к агонистов.

Неконкурентные

Неконкурентные антагонисты связывается не с тем сайтом на рецепторе, с которым связывается агонист. В отличие от конкурентных антагонистов, неконкурентные меняют и ЕС 50 агониста, и его максимальный возможный эффект; то есть, действие неконкурентного антагониста НЕ буже быть нивелирована при любой концентрации агониста, поскольку агонист невытесняющем антагонист с рецептора. При этом сдвиг кривой доза-эффект справа при воздействии неконкурентного антагониста наблюдается только при наличии резерва неактивированных рецепторов, а угнетение максимального эффекта агониста начинается при исчерпании этого резерва.

Примером неконкурентного антагонизма является действие циклотиазиду на метаботропных глутаматных рецепторов типа 1 (mGluR1).

Бесконкурентная

Бесконкурентная антагонисты отличаются от неконкурентных нуждающимся активации рецептора агонистом для того, чтобы с ним связаться. Признаком бесконкурентного механизма действия антагониста является то, что и сама концентрация антагониста блокирует действие более высоких концентраций агониста лучше, чем низших.

Примером бесконкурентного антагонизма является действие метамину на NMDA-рецептор, или пикротоксина на ГАМК A рецептор.

Частичные агонисты

Частичный агонист — вещество, которое способно активировать рецепетор, но с меньшим максимально возможным эффектом, чем природный агонист рецептора. Хотя они и являются агонистами, их фармакологический профиль, фактически, соответствует такому конкурентных антагонистов в присутствии полного агониста. В фармакологии они используются для активации некоторого нужного процесса, но с предупреждением слишком активно его течения. Применение частичных агонистов в клинической практике способно предотвращать развитие адаптивных регуляторных механизмов («привыкание») при его хроническом использовании.

Примером частичного агонизму является действие клинического анальгетика бупренорфина на μ-опиоидных рецепторов, при которой практически не развивается привыкание и, как следствие, наркотическая зависимость.

Обратные агонисты

Обратная агонист может демонстрировать эффект, аналогичный таковому в антагониста, но при этом активирует другие биохимические механизмы для его достижения. Рецепторы, которые с некоторой вероятностью способны находиться в активированном состоянии, обеспечивая некоторый уровень «фоновой» активности, обычно имеют вещества — обратные агонисты, которые не только блокируют эффекты агониста, но и подавляют фоновую активность рецептора, вызывая «обратный» эффект. Значительное количество веществ, которые предварительно относили к фармакологического класса антагонистов, впоследствии были переклассифицированные в обратные агонисты после открытия наличии фоновой активности в соответствующих рецепторов.

Примером обратных агонистов являются антигистаминные препараты.

Возвратность действия

Многие антагонистов связываются с рецепторами обратно, то есть рецепторно-лигандного комплекс в их случае может диссоциировать с вероятностью, определяемой параметрами фармакокинетики антагониста.

В то же время, вещества, образующие ковалентную связь с рецепторной молекулой, при наличии антагонистического эффекта называются «необратимыми антагонистами»: высвобождение рецептора и восстановления его эффектов в данном случае возможно только путем деструкции молекулы связанного с антагонистом рецептора метаболическим путем, и синтеза новой.

Примером необратимого антагонизма является действие феноксибензамину на адренорецепторы, при которой становится невозможной действие адреналина и норадреналина.

Действие необратимого антагониста при построении кривой доза-эффект проявляется в уменьшении максимального возможного эффекта агониста, и смещении кривой справа при наличии рецепторного резерва. Для различения действия необратимого на обратной неконкурентного антагониста используется отмывания антагониста из среды: в случае обратного антагониста активность рецептора в этом случае восстанавливается.

Ссылка на основную публикацию
Слива — это ягода или фрукт
Слива - это ягода или фрукт? Слива: особенности выращивания, виды и отзывы Обилие фруктов и овощей, ягод и заморских плодов...
Скрежет зубов или бруксизм
Почему возникает скрежет зубами во сне и что делать Скрежет зубами во сне доставляет немало неприятных ощущений тем людям, которым...
Скрининг новорожденных в роддоме
Неонатальный скрининг новорожденных: зачем он нужен и как его проводят Главный вопрос, который волнует родителей новорожденного малыша, — здоровье ребенка....
Слизистая оболочка носа как снять отек, избавиться от сухости, какие существуют способы лечения и во
3.4.3. Средства, уменьшающие отек слизистых оболочек Воспалительные, в том числе аллергические, заболевания органов дыхания и глаз обычно сопровождаются отеком слизистых...
Adblock detector