Химическая природа глюкагона

3.2. Глюкагон: химическая природа, регуляция секреции, механизм действия, роль в обмене.

Глюкагон представляет собой гормон полипептидной природы, выделяемый a-клетками поджелудочной железы. Основной функцией этого гормона является поддержание энергетического гомеостаза организма за счет мобилизации эндогенных энергетических ресурсов, этим объясняется его суммарный катаболический эффект.

В состав полипептидной цепи глюкагона входит 29 аминокислотных остатков, его молекулярная масса 4200, в его составе отсутствует цистеин. Глюкагон был синтезирован химическим путем, чем была окончательно подтверждена его химическая структура.

Глюкагон образуется из препроглюкагона — пептида-предшественника, состоящего из 180 аминокислоти пяти доменов которые подвергаются раздельному процессингу (Bell et al., 1983). За N-концевым сигнальным пептидом в молекуле препроглюкагона следует глицентиноподобный панкреатический пептид затем идут аминокислотные последовательности глюкагона и глюкагоноподобных пептидов типов 1 и 2. Процессинг препроглюкагона осуществляется в несколько этапов и зависит от ткани, в которой он происходит. В результате из одного и того же препрогормона в а-клетках островков поджелудочной железы и в нейроэндокринных клетках кишечника (L-клетках) образуются разные пептиды. Глицентин, важнейший промежуточный продукт процессинга, состоит из N-концевого глицентиноподобного панкреатического пептида и С-концево-го глюкагона, разделенных между собой двумя остатками аргинина. Оксинтомодулин состоит из глюкагона и С-концевого гексапептида, тоже разделенных между собой двумя остатками аргинина.

Физиологическая роль пептидов — предшественников глюкагона не ясна, однако сложная регуляция процессинга препроглюкагона предполагает, что всем им должны быть присущи особые функции. В секреторных гранулах а-клеток островков поджелудочной железы различимы центральное ядро из глюкагона и периферический ободок из глицентина. В L-клетках кишечника секреторные гранулы содержат только глицентин; по-видимому, эти клетки лишены фермента, который превращает глицентин в глюкагон. Оксинтомодулин связывается с рецепторами глюкагона на гепатоцитах и стимулирует аденилатциклазу; активность этого пептида составляет 10—20% активности глюкагона. Глюкагоноподобный пептид типа 1 — чрезвычайно сильный стимулятор секреции инсулина, но он не оказывает почти никакого действия на гепатоциты. Глицентин, оксинтомодулин и глюкагоноподобные пептиды обнаруживаются преимущественно в кишечнике. Их секреция продолжается и после панкреатэктомии.

Регулируемым параметром в контуре регуляции секреции глюкагона является концентрация глюкозы. Уменьшение ее в крови стимулирует альфа-клетки, которые увеличивают секрецию гормона, что приводит к росту концентрации глюкозы, которая путем отрицательной обратной связи уменьшает секрецию глюкагона.

Увеличение секреции глюкагона вызывает повышение концентрации аминокислот в крови (особенно аргинина) холецистокинина, катехоламинов, ацетилхолина. Уменьшение секреции глюкагона возникает при увеличении: концентрации глюкозы в крови, инсулина, соматостатина, жирных кислот и кетонов.

Глюкагон для гепатоцитов служит внешним сигналом о необходимости выделения в кровь глюкозы за счёт распада гликогена (гликогенолиза) или синтеза глюкозы из других веществ — глюконеогенеза (этот процесс будет изложен позднее). Гормон связывается с рецептором на плазматической мембране и активирует при посредничестве G-белка аденилатциклазу, которая катализирует образование цАМФ из АТФ (см. раздел 5). Далее следует каскад реакций, приводящий в печени к активации гликогенфосфорилазы и ингибированию гликогенсинтазы (рис. 7-29). Этот механизм приводит к высвобождению из гликогена глюкозо-1-фосфата, который превращается в глюкозо-6-фосфат. Затем под влиянием глюкозо-6-фосфатазы образуется свободная глюкоза, способная выйти из клетки в кровь. Таким образом, глюкагон в печени, стимулируя распад гликогена, способствует поддержанию глюкозы в крови на постоянном уровне.

1 — глюкагон и адреналин взаимодействуют со специфическими мембранными рецепторами. Комплекс гормон-рецептор влияет на конформацию G-белка, вызывая диссоциацию его на протомеры и замену в α-субъединице ГДФ на ГТФ; 2 — α-субъединица, связанная с ГТФ, активирует аденилатциклазу, катализирующую синтез цАМФ из АТФ; 3 — в присутствии цАМФ протеинкиназа А (цАМФ-зависимая) обратимо диссоциирует, освобождая обладающие каталитической активностью субъединицы С; 4 — протеинкиназа А фосфорилирует и активирует киназу фосфорилазы; 5 — киназа фосфорилазы фосфорилирует гликогенфосфорилазу, переводя её в активную форму; 6-протеинкиназа А фосфорилирует также гликогенсинтазу, переводя её в неактивное состояние; 7 — в результате ингибирования гликогенсинтазы и активации гликогенфосфорилазы гликоген включается в процесс распада; 8 — фосфодиэсте-раза катализирует распад цАМФ и тем самым прерывает действие гормонального сигнала. Комплекс ос-субъединица-ГТФ затем распадается, α-, β- и γ-субъединицы G-белка реассоциируются.

Глюкагон увеличивает содержание глюкозы (способствует гипергликемии) в плазме крови. Этот эффект реализуется несколькими путями.

Стимуляция гликогенолиза. Глюкагон, активируя гликоген фосфорилазу и ингибируя гликоген синтазу в гепатоцитах, приводит к быстрому и выраженному распаду гликогена и освобождению глюкозы в кровь.

Подавление гликолиза. Глюкагон ингибирует ключевые ферменты гликолиза (фосфофруктокиназа, пируваткиназа) в печени, что приводит к  содержания глюкозо-6-фосфата в гепатоцитах, его дефосфорилированию и освобождению глюкозы в кровь.

Стимуляция глюконеогенеза. Глюкагон усиливает транспорт АК из крови в гепатоциты и одновременно активирует ключевые ферменты глюконеогенеза (пируваткарбоксилаза. Фруктозо01,6-дифосфатаза), что приводи к  содержания глюкозы в цитоплазме клеток и её поступлению в кровь.

Глюкагон способствует образованию кетоновых тел путем стимуляции окисления жирных кислот: ингибирование активности ацетил-КоА-карбоксилазы приводит к ↓ содержания ингибитора карнитин ацилтрансферазы – малонил-КоА, что приводит к усиленному поступлению жирных кислот из цитоплазмы в митохондрии для их β-окисления и превращения в кетокислоты. Другими словами, в отличие от инсулина, глюкагон оказывает кетогенный эффект.

Глюкагон: химическая природа, регуляция секреции, механизм действия, роль в обмене

Глюкагон, секретируемый А-клетками панкреотических островков и верхних отделов ЖКТ, был назван гипергликемическим фактором, поскольку первоначально было обнаружено его свойство повышать содержание глюкозы в крови за счёт ускорения гликогенолиза в печени. Впервые был обнаружен в коммерческих препаратах инсулина ещё в 1923г., однако только в 1953г. венгерский биохимик Ф. Штрауб получил его в гомогенном состоянии его М=3485 Да. Глюкагон содержит 29 аминокислот.

Ген глюкагона кодирует молекулу препроглюкагона, состоящую из 180 аминокислот, которая, помимо глюкагона, содержит несколько других пептидов, включая ГПП-1 и ГПП-2. Ген глюкагона экспрессируется в a-клетках островков поджелудочной железы и в L-клетках кишечника, где процессинг проглюкагона различен. В результате протеолитического процессинга проглюкагона потенциально могут образовываться следующие 6 пептидов: глюкагон (29 аминокислотных остатков), аминотерминальный или глюкагонотносящийся пептид (GRPP, включающий 30 аминокислотных остатков), вставочный пептид 1 (состоит из 6 аминокислотных остатков) и вставочный пептид 2 (состоит из 13 аминокислотных остатков), ГПП-1 (состоит из 37 аминокислотных остатков) и ГПП-2 (состоит из 35 аминокислотных остатков). Молекула проглюкагона кодируется одним (общим) геном, и мРНК проглюкагона, идентифицированная из поджелудочной железы, кишечника и мозга идентична. Однако протеолитический процессинг проглюкагона в перечисленных тканях различен. Так, в a-клетках поджелудочной железы в основном образуется глюкагон, а остальные пептиды практически не определяются, тогда как в L-клетках кишечника глюкагон не образуется. В результате протеолитического процессинга в этих клетках выявляется определенное количество неполноценных пептидов (глицентин и оксинтомодулин), физиологическая функция которых пока остается неясной. Основное количество высвобождаемых из L-клеток пептидов приходится на ГПП-1 (и его амидную форму 7-36), ГПП-2 и амидную форму вставочного пептида 2. В клетках гипоталамуса процессинг проглюкагона происходит подобно тому, что наблюдается в L-клетках кишечника, хотя в клетках гипоталамуса выявляется и небольшое количество глюкагона.

Читайте также:  Жизнь без счастья ангедония Журнал Вестник Психологии

В регуляции экспрессии гена глюкагона принимают участие многие физиологические факторы, такие как компоненты пищи — глюкоза и аминокислоты, а также различные гормоны — адреналин, инсулин и соматостатин. Регуляция процессинга проглюкагона в a-клетках островка поджелудочной железы и в L-клетках кишечника различна, о чем свидетельствует тот факт, что глюкоза угнетает секрецию глюкагона в островках поджелудочной железы, тогда как высвобождение глицентина из кишечника при этих условиях не изменяется или даже стимулируется. Исследования in vitro на культурах различных типов a-клеток (RIN 56A, InR I G9r) показали, что эфиры форбола и аналога диацилглицерина увеличивают биосинтез глюкагона и их влияние опосредуется на уровне трансляции. Специфичность их действия подтверждается тем, что эти вещества не оказывают никакого влияния на другие гены гормонов (инсулин и соматостатин), также локализованные в островке поджелудочной железы. Не исключено, что в регуляции гена глюкагона принимает значительное участие протеинкиназа С. Глюкокортикоиды in vivo не влияют на экспрессию гена глюкагона, тогда как in vitro под влиянием дексаметазона четко отмечается снижение количества мРНК глюкагона, но только при его концентрации 7-10 M и периода инкубации в течение 24-36 ч.

Кроме того, на регуляцию секреции глюкагона дополнительно влияют многие вещества. Так, стимулирующим влиянием на высвобождение глюкагона обладают следующие вещества: адреналин, норадреналин, ацетилхолин, дофамин, ВИП, нейротензин, вещество Р, простагландины, b-эндорфины, гастрин, холецистокинин, ГИП, СТГ, фуросемид, L-дофа, клофелин, оксиметазолин, а также стресс, голодание, большие физические нагрузки, гипогликемия или цитогликопения (прием 2-деоксиглюкозы), снижение уровня СЖК или повышение концентрации аминокислот в крови. Стимуляция адренергической и парасимпатической нервной систем, а также период адаптации новорожденного к внешним условиям в постнатальный период также сопровождаются повышением концентрации глюкагона в периферическом кровообращении.

Глюкагон, секретируемый a-клетками островков Лангерганса, вначале попадает в межклеточное пространство и интерстициальную жидкость, а затем с током крови через портальную вену — в печень, где он увеличивает гликогенолиз, снижает утилизацию глюкозы и синтез гликогена, повышает глюконеогенез и образование кетоновых тел. Суммарным эффектом этих воздействий является увеличение образования и выхода глюкозы из печени. В периферических тканях глюкагон оказывает липолитическое действие, повышая липолиз, снижая дипогенез и белковый синтез. Липолиз активируется гормон-чувствительной липазой.

Не исключено, что в организме транспорт глюкагона осуществляется в связанном с глобулинами состоянии. Этим, в частности, объясняются данные, показывающие, что полупериод исчезновения глюкагона плазмы крови составляет от 3 до 16 мин. Свободные формы глюкагона метаболизируют и удаляются из крови быстро, тогда как глюкагон, связанный с белками плазмы, метаболизируется более медленно. Концентрация глюкагона в портальной вене составляет от 300 до 4 500 пг/мл, тогда как в периферической крови — до 90 пг/мл (в среднем 24 ± 6 пг/мл) и в ответ на введение аргинина или холецистокинина увеличивается до 1 200 пг/мл.

Глюкагон оказывает свое специфическое действие через рецепторы. Установлено, что рецептор к глюкагону является гликопротеином, содержащим 4 N-связанные олигосахаридные цепи и внутримолекулярные дисульфидные мостики. Мол. м. рецептора составляет 62 000. Глюкагонсвязывающие места располагаются на СООН-терминальном домене рецептора. Способность рецепторов к глюкагону взаимодействовать с соответствующим гормоном непостоянна и зависит от нескольких факторов. Связывание глюкагона с рецепторами уменьшается при гиперглюкагонемии, вызванной длительным голоданием, инсулиновой недостаточностью или экзогенным введением глюкагона. Однако несмотря на такую обратную регуляцию, процесс активирования аденилатциклазы под влиянием глюкагона не изменяется. Это состояние достигается тем, что оставшиеся рецепторы приобретают повышенную способность к комплексированию с гормоном.

Основное гликогенолитическое действие глюкагона осуществляется в печени, где он связывается с рецепторами гепатоцитов и активирует аденилатциклазу, которая переводит АТФ в цАМФ. Далее активизируется цАМФ-зависимая протеинкиназа, стимулирующая фосфорилазу киназы. Последняя конвертирует неактивную фосфорилазу в активную ее форму (фосфорилазу А), под влиянием которой ускоряются гликогенолиз и глюконеогенез, что сопровождается повышением образования глюкозы печенью. Наряду с этим протеинкиназа инактивирует гликогенсинтазу, вследствие чего замедляется синтез гликогена. Действие глюкагона на активность фосфорилазы и гликогенсинтазы развивается в течение 1-2 мин после введения гормона. Установлено также, что взаимодействие глюкагона с рецептором и активирование пострецепторных механизмов его действия протекают с обязательным участием ГТФ, дивалентных катионов (кальций и магний) и аденозина. После связывания глюкагона с рецептором мембраны происходят «погружение» глюкагонорецепторного комплекса в липидные слои мембраны и взаимодействие с гуаниннуклеотидсвязывающим белком. В результате этого белок освобождается от связи с гуанозиндифосфатом (ГДФ) и соединяется с гуанозинтрифосфатом (ГТФ). ГТФ-связанный белок после этого взаимодействует с каталитической субъединицей аденилатциклазы с образованием активного комплекса, переводящего АТФ в цАМФ с участием цАМФ-зависимой протеинкиназы. Таким образом, эффекты действия глюкагона опосредуются в основном цАМФ. Однако не исключается, что его гликогенолитическое влияние может осуществляться и другими (не цАМФ) механизмами. Секреция глюкагона, так же как и инсулина, осуществляется пульсирующим образом.

Помимо влияния на углеводный обмен, глюкагон стимулирует кетогенез в печени, скорость которого зависит от поступления свободных жирных кислот в печень. Скорость кетогенеза печени определяется соотношением глюкагон/инсулин в крови, поступающей в печень. J. D. McGarry и D. W. Foster установили, что высокое соотношение глюкагон/инсулин повышает внутриклеточный уровень цАМФ, уменьшает гликогенолиз и активность ацетил-СоА карбоксилазы. Это снижает внутриклеточное содержание малонил-СоА, что сопровождается в свою очередь почти полной блокадой синтеза жирных кислот, вызывает угнетение карнитинацилтрансферазы и последующую стимуляцию липолиза с избыточным образованием кетоновых тел (ацетоацетата и 3-гидроксимасляной кислоты). G. Paolisso и соавт. в исследованиях на человеке показали, что пульсирующее введение глюкагона (а не его введение с постоянной скоростью) оказывает более выраженное гипергликемическое, липолитическое действие и влияние на скорость кетогенеза. Кроме того, это действие более выраженно проявляется в условиях инсулиновой недостаточности, вызванной соматостатином. У пожилых лиц четко выявляется уменьшение липолитического и кетогенного действия глюкагона, тогда как гипергликемический эффект глюкагона у них остается интактным. Недавние исследования М. G. Carlson, выполненные на добровольцах, четко подтвердили, что умеренная гиперглюкагонемия стимулирует скорость повышения в плазме крови СЖК и глицерина. В эксперименте при условии блокады или угнетения образования глюкагона скорость образования глюкозы и кетоновых тел печенью остается в норме или близкой к норме, несмотря на тотальное отсутствие инсулина. Эти наблюдения позволяют считать, что при сахарном диабете типа 1 необходимо хотя бы временно перевести инсулинзависимое состояние в инсулиннезависимое.

Читайте также:  Мазь от дерматита лечение негормональным, гормональным кремом Азбука здоровья

Таким образом, глюкагон в организме выполняет в первую очередь функцию обеспечения источниками энергии, защищая, таким образом, организм от гипогликемии. Эту функцию он осуществляет путем влияния на углеводный, белковый и жировой обмен. В печени он стимулирует образование глюкозы как из гликогена (гликогенолиз), так и из аминокислот (глюконеогенез), что сопровождается увеличением продукции глюкозы печенью. Увеличивая липолиз жира, он способствует увеличению поступления СЖК в печень и повышению образования кетоновых тел. Среди всех контринсулиновых гормонов глюкагону принадлежит первое место. Помимо защитной функции от возможной гипогликемии, глюкагон также восстанавливает нормогликемию при уже развившейся гипогликемии.

Помимо поддержания энергетического гомеостаза, глюкагон умеренно снижает уровень холестерина и триглицеридов в сыворотке крови, а также стимулирует высвобождение инсулина. Вместе с инсулином он участвует в процессах регенерации печени. Вот почему предложенное в свое время оперативное лечение сахарного диабета в виде проведения хирургического вмешательства, направленного на изменение оттока венозной крови от поджелудочной железы, при котором панкреатическая вена, в нормальных условиях впадающая в портальную систему печени, трансплантировалась в нижнюю полую вену (операция депортализация), не может считаться физиологическим и вызывает значительные изменения функции печени, практически не приводя к улучшению течения диабета и не позволяя отказаться от заместительной терапии инсулином. Операция депортализация была предложена для лечения сахарного диабета 1 типа, исходя из бигормональной теории сахарного диабета, в соответствии с которой развитие сахарного диабета 1 типа считалось следствием относительной гиперглюкагонемии. Для ликвидации гиперглюкагонемии, которая почти постоянно встречается при сахарном диабете и лишь отражает степень декомпенсации углеводного обмена, и была предложена депортализация, при которой глюкагон, избыточно образующийся в этом случае, поступает в большой круг кровообращения и отводится от печени в целях предотвращения его гипергликемического действия. В результате такой операции уровень глюкагона в крови почти не изменяется. Это связано с тем, что, как показал J. Bringer, после панкреатэктомии, проведенной по поводу различных заболеваний поджелудочной железы, уровень глюкагона в сыворотке крови больных изменяется незначительно в связи с активированием вне-панкреатической секреции глюкагона. В условиях депортализации ослабляется или прерывается гепатотропное действие глюкагона, имеющее большое значение для сохранения нормальной функции печени.

Соматостатин: химическая природа, регуляция секреции, механизм действия, роль в обмене

Соматостатин (GHIF — growth hormone inhibiting factor, SRIF — somatotropin-release inhibiting factor). Полипептид, состоящий из 14 аминокислот. Своеобразие распределения d-клеток, а именно их разбросанность среди других эндокринных клеток желудочно-кишечного тракта и поджелудочной железы представляет морфологическую основу для высвобождения и местного действия гормона на соседние клетки-мишени. В этом отношении соматостатин может рассматриваться как аналог других местных гормонов, к которым относятся, в частности, гистамин и серотонин.Кроме того, соматостатин, выявляющийся не только в клетках, где он секретируется, но и в нервных волокнах, в том числе желудочно-кишечного тракта, осуществляет свое действие и через нейрокринные механизмы, т.е. путем высвобождения из нервных окончаний.

Концентрация соматостатина в островках Лангерганса поджелудочной железы превышают уровень его в тканях гипоталамической зоны головного мозга, из которых он впервые был экстрагирован (1973). Много соматостатина также в антральной слизистой оболочке желудка, существенно меньше — в кишечной слизистой оболочке. В целом 3/4 всего иммунореактивного соматостатина вырабатывается расположенными в органах пищеварения D-клетками, остальное количество вырабатывается в головном мозгу. В отличие от других полипептидных гормонов, молекула-предшественник соматостатина обладает определенной биологической активностью, которая в то же время во много раз менее выражена, чем у молекулы гормона. Срок «полужизни» гормона в крови измеряется 3-4 минутами.

Можно выделить следующие стороны действия соматостатина:

Торможение базальной и стимулированной инкреции соматотропного гормона.

Торможение инкреции пролактина и АКТГ.

Торможение базальной и стимулированной инкреции инсулина, глюкагона и панкреатического полипептида путем прямого влияния на образующие их клетки поджелудочной железы.

Торможение инкреции всех изученных желудочно-кишечных гормонов: гастрина, секретина, ХКП, ГИП, ВИП, мотилина и энтероглюкагона.

Торможение инкреции кальцитонина.

Торможение выделения почками ренина.

Торможение желудочной секреции соляной кислоты и пепсина, секреции панкреатических бикарбонатов и ферментов.

Торможение гастродуоденальной и билиарной моторики.

Функции глюкагона в организме человека

Для полноценного функционирования человеческого организма необходима слаженная работа всех его органов. Очень многое в этом зависит от выработки гормонов и их достаточного содержания.

Один из органов, отвечающих за синтез гормонов – поджелудочная железа. Она вырабатывает несколько разновидностей гормонов, в число которых входит глюкагон. Каковы же его функции в организме человека?

Гормоны поджелудочной железы

При нарушениях в работе человеческого организма необходимо учитывать различные факторы. Они могут быть внешними и внутренними. Среди внутренних факторов, которые могут спровоцировать развитие патологических изменений, можно назвать избыток либо дефицит гормонов определенного типа.

Для устранения проблемы нужно знать, какая железа вырабатывает тот или иной вид соединения, чтобы принять необходимые меры.

Читайте также:  Как делать компрессы с камфорным маслом; компресс для прекращения лактации

Поджелудочной железой вырабатывается несколько видов гормонов. Основным является инсулин. Он представляет собой полипептид, в составе которого находится 51 аминокислота. При недостаточном либо избыточном образовании этого гормона в организме человека возникают отклонения. Нормальные его показатели колеблются в пределах от 3 до 25 мкЕд/мл. У детей его уровень немного снижен, у беременных женщин может повышаться.

Инсулин необходим для снижения количества сахара. Он активирует усвоение глюкозы мышечной и жировой тканью, обеспечивая ее преобразование в гликоген.

Кроме инсулина, поджелудочная железа отвечает за синтез таких гормонов, как:

  1. С-пептид. Он не относится к числу полноценных гормонов. По сути, это один из элементов проинсулина. Он отделяется от основной молекулы и оказывается в крови. С-пептид представляет собой эквивалент инсулина, по количеству которого можно диагностировать патологии в работе печени и поджелудочной железы. Также он указывает на развитие сахарного диабета.
  2. Глюкагон. По своему действию этот гормон противоположен инсулину. Его особенностью является повышение уровня сахара. Это достигается благодаря его воздействию на печень, которая стимулирует выработку глюкозы. Также с помощью глюкагона происходит расщепление жиров.
  3. Панкреатический полипептид. Этот гормон был обнаружен недавно. Благодаря ему сокращается расход желчи и пищеварительных ферментов, что обеспечивается регуляцией деятельности мускулатуры желчного пузыря.
  4. Соматостатин. Он оказывает воздействие на работу других гормонов поджелудочной железы и ферментов. Под его влиянием снижается количество глюкагона, соляной кислоты и гастрина, а также замедляется процесс усвоения углеводов.

Помимо этих гормонов, поджелудочная железа вырабатывает и другие. От того, насколько их количество соответствует норме, зависит деятельность организма и риск развития патологий.

Функции глюкагона в организме

Чтобы лучше понять роль глюкагона для человеческого организма, необходимо рассмотреть его функции.

Этот гормон влияет на работу ЦНС, которая зависит от постоянства концентрации в крови глюкозы. Глюкоза вырабатывается печенью, и в этом процессе участвует глюкагон. Также он занимается регуляцией ее количества в крови. Благодаря его действию происходит распад липидов, что способствует снижению количества холестерина. Но это не единственные функции данного гормона.

Помимо них, он выполняет следующие действия:

  • стимулирует кровоток в почках;
  • способствует выведению натрия, нормализуя деятельность сердечно-сосудистой системы;
  • восстанавливает клетки печени;
  • повышает содержание кальция внутри клеток;
  • снабжает организм энергией, расщепляя липиды;
  • нормализует сердечную деятельность, влияя на частоту пульса;
  • повышает давление.

Его влияние на организм считается противоположным тому, что оказывает инсулин.

Химическая природа гормона

Биохимия этого соединения тоже очень важна для полного понимания его значимости. Он возникает в результате деятельности альфа-клеток островков Лангенганса. Также его синтезируют другие участки ЖКТ.

Глюкагон представляет собой полипептид одноцепочечного типа. В его состав входит 29 аминокислот. Строение его имеет сходство с инсулином, но в нем есть некоторые аминокислоты, которые в инсулине отсутствуют (триптофан, метионин). А вот цистина, изолейцина и пролина, которые имеются в составе инсулина, в глюкагоне нет.

Формируется этот гормон из пре-глюкагона. Процесс его выработки зависит от количества глюкозы, которая поступает в организм во время еды. Стимуляция его выработки принадлежит аргинину и аланину – при увеличении их количества в организме глюкагон образуется интенсивнее.

При чрезмерной физической активности его количество тоже может резко увеличиваться. Также на содержание его в крови влияет инсулин.

Механизм действия

Основным объектом воздействия этого соединения является печень. Под его влиянием в этом органе осуществляется сначала гликогенолиз, а немного позднее – кетогенез и глюконеогенез.

Этот гормон не может сам проникать в клетки печени. Для этого ему приходится взаимодействовать с рецепторами. При взаимодействии глюкагона с рецептором происходит активация аденилатциклазы, что способствует выработке цАМФ.

В результате начинается процесс расщепления гликогена. Это указывает на потребность организма в глюкозе, поэтому она в ходе гликогенолиза активно поступает в кровь. Другой вариант – синтезирование ее из других веществ. Это называется глюконеогенезом.

Также он является ингибитором синтеза белка. Его воздействие часто сопровождается ослаблением процесса окисления глюкозы. Результатом становится кетогенез.

Это соединение не влияет на гликоген, содержащийся в скелетных мышцах, что объясняется отсутствием в них рецепторов.

Увеличение числа цАМФ, вызванное глюкагоном, приводит к инотропному и хронотропному действию на миокард. В результате у человека повышается давление, усиливаются и учащаются сердечные сокращения. Это обеспечивает активацию кровообращения и подпитку тканей питательными элементами.

Большое количество этого соединения вызывает спазмолитический эффект. У человека расслабляются гладкие мышцы внутренних органов. Наиболее сильно это проявляется в отношении кишечника.

Глюкоза, кетокислоты и жирные кислоты являются энергетическими субстратами. Под влиянием глюкагона происходит их высвобождение, за счет чего они делаются доступными для мышц скелета. Благодаря активному кровотоку эти вещества лучше распространяются по телу.

К чему ведет избыток и недостаток гормона в организме?

Самый основной эффект гормона – увеличение числа глюкозы и жирных кислот. Хорошо это или плохо, зависит от того, много ли глюкагона синтезируется.

При наличии отклонений он начинает продуцироваться в больших количествах – таких, что это опасно развитием осложнений. Но и слишком малое его содержание, вызванное сбоями в работе организма, приводит к неблагоприятным последствиям.

Чрезмерная выработка этого соединения ведет к перенасыщению организма жирными кислотами и сахаром. Иначе это явление называют гипергликемией. Единичный случай ее возникновения не опасен, но систематическая гипергликемия ведет к развитию нарушений. Она может сопровождаться тахикардией и постоянным ростом артериального давления, что ведет к гипертонии и сердечным патологиям.

Слишком активное передвижение крови по сосудам может вызвать их преждевременное изнашивание, отчего возникают болезни сосудов.

При аномально малом количестве этого гормона организм человека испытывает нехватку глюкозы, что приводит к гипогликемии. Это состояние тоже относится к числу опасных и патологических, поскольку может вызвать массу неприятных симптомов.

К ним относятся:

  • тошнота;
  • головокружение;
  • тремор;
  • низкая работоспособность;
  • слабость;
  • помутнение сознания;
  • судороги.

В особенно тяжелых случаях может наступить смерть больного.

Видео-материал о влиянии глюкагона на вес человека:

Исходя из этого, можно сказать, что, несмотря на множество полезных особенностей, содержание глюкагона в организме не должно выходить за пределы нормы.

Ссылка на основную публикацию
Хельба (пажитника семена) применение, рецепты
Полезные свойства Хельбы или пажитника для лечения, похудения, лица и волос Здравствуйте, уважаемые читатели. Вероятно, не все еще знают, что...
Фурункул на интимном месте особенности и лечение
Что делать при появлении фурункулов на женских гениталиях? Бритье интимных мест сейчас считается повседневной гигиеной. Большинство женщин сбривают волосы не...
Фурункул причины, симптомы, диагностика, лечение, профилактика
Фурункулы и карбункулы , MD, JD, North Atlanta Dermatology Last full review/revision August 2017 by A. Damian Dhar, MD, JD...
Хельба для похудения Широкую известность, как средство для похудения,… mettiss — LiveJournal
Березовый деготь, особенности его применения внутрь и отзывы Сферы применения Инструкция по применению березового дегтя для очищения организма и похудения...
Adblock detector